AI does not mean the robots are coming - FT中文网
登录×
电子邮件/用户名
密码
记住我
请输入邮箱和密码进行绑定操作:
请输入手机号码,通过短信验证(目前仅支持中国大陆地区的手机号):
请您阅读我们的用户注册协议隐私权保护政策,点击下方按钮即视为您接受。
观点 人工智能

AI does not mean the robots are coming

The technology will transform existing machines, such as cars, long before it allows the creation of androids
00:00

Pepper the humanoid robot was born in 2014. It enjoyed a brief wave of hype, including a visit to the Financial Times to meet the editor. This is a robot that behaves autonomously, powered by love,” declared Masayoshi Son, the head of its main backer, SoftBank. Alibaba and Foxconn also invested hundreds of millions in the effort to make robotics a ubiquitous part of daily life. Yet it was not to be. You still find the occasional Pepper in a public library in Japan, unplugged, its head bowed, like a four-foot tall Pinocchio that dreamt of becoming a real boy but never did. Production halted in 2021 and only 27,000 units were ever made.

Yet the vision of humanoid robots — of machines so like ourselves they can perform all the work we do not want to — is too alluring to abandon for long. The recent, dramatic advances in artificial intelligence have spurred a new wave of enthusiasm for robotics. “The next wave of AI is physical AI. AI that understands the laws of physics, AI that can work among us,” said Jensen Huang, chief executive of chip designer Nvidia, earlier this year. Nvidia has ridden the boom in training AI models to become the world’s second-largest company by market capitalisation.

Billions of dollars in venture capital are pouring into robotics start-ups. They aim to apply the same kind of model training techniques that let computers forecast how a protein will fold or generate startling realistic text. They aim, first, to let robots understand what they see in the physical world, and second, to interact with it naturally, solving the huge programming task embodied in as simple an action as picking up and manipulating an object.

Such is the dream. The latest round of investors and entrepreneurs, however, are likely to end up just as disappointed as those who backed Pepper. That is not because AI is not useful. Rather, it is because the obstacles to making an economically viable robot that can cook dinner and clean the toilets are a matter of hardware, not just software, and AI does not in itself address, let alone resolve them.

These physical challenges are many and difficult. For example, a human arm or leg is moved by muscles, whereas a robotic limb must be actuated by motors. Each axis of motion through which the limb must move requires more motors. All of this is doable, as the robotic arms in factories demonstrate, but the high-performance motors, gears and transmissions involved create bulk, cost, power requirements and multiple components that can and will break down.

After creating the desired motion, there is the challenge of sensing and feedback. If you pick up a piece of fruit, for example, then the human nerves in your hand will tell you how soft it feels and how hard you can afford to squeeze it. You can taste whether food is cooked and smell whether it is burning. None of those senses is easy to provide for a robot, and to the extent they are possible, they add more cost. Machine vision and AI may compensate, by observing whether the fruit is squashed or the food in the pan has gone the right colour, but they are an imperfect substitute.

Then there is the issue of power. Any autonomous machine needs its own energy source. The robot arms in factories are plugged into the mains. They cannot move around. A humanoid robot is most likely to use a battery, but then there are trade-offs with bulk, power, strength, flexibility, operating time, usable life and cost. These are just some of the problems. Many clever people are working to solve them and they are making progress. But the point is that these are physical challenges, long-standing and difficult. Even a revolution in AI does not make them go away.

What, then, does AI make possible in the physical world? Rather than imagine how the technology will allow new machines, it is more practical to imagine how existing machines will change once AI is applied to them.

The obvious example is self-driving vehicles. In this case, the machine does not need to change at all: a car’s movement through the physical world and its power source will work as they always have, while the sensing involved in driving a car is almost entirely visual. With the new vogue for AI, the hype cycle for autonomous vehicles has died down. It should actually be the opposite: self-driving is a vast market and it is the real-world challenge AI can most easily tackle, a point that anybody tempted to invest in other applications to robotics should ponder.

It also makes sense to think about how the robots that already exist — from industrial robotic arms to robot vacuum cleaners — will evolve. AI-powered machine vision will subtly increase the range of tasks a robotic arm can perform and make it safer for them to work alongside humans. Lightweight, single-purpose devices such as robot vacuum cleaners will gradually become more useful. In Chinese hotels, for example, it is already quite common to have a robot bring deliveries to your room. That kind of limited and controlled autonomy is the most easily delivered.

In this way, AI will slowly advance us closer to androids. As for a robot like Pepper that can clean the toilet — sadly it is far easier to make one that writes bad poetry, and that is unlikely to change any time soon.

版权声明:本文版权归FT中文网所有,未经允许任何单位或个人不得转载,复制或以任何其他方式使用本文全部或部分,侵权必究。

美国的贸易要求远不止关税

美国准备将目光投向增值税、食品标准和汇率等“非关税壁垒”。

市场动荡让网红主播与特朗普的“兄弟情”受到考验

这些网红对特朗普的支持在他的选举胜利中起到了关键作用,如今特朗普关税引发的市场动荡正让他们的财富缩水。

通货膨胀让美国人放弃“大豪宅”梦

即使在得克萨斯州,由于负担能力危机,拥有住房的美国梦也在缩小。

FT社评:特朗普对东南亚征收关税可能弄巧成拙

如果美国更强硬地逼迫东南亚国家在美国和中国之间做出选择,可能反而将它们推向中国的怀抱。

Lex专栏:交易所可在市场巨震中提供避风港

高波动性将提振交易并扩大价差,从而可能吸引更多交易者。

企业能否利用特朗普关税的差异?

根据“原产地规则”,转移产品供应链的部分环节可能节省大量关税支出,但试图利用这一点也伴随着风险。
设置字号×
最小
较小
默认
较大
最大
分享×